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and so (xy)' = eXiaun(Yieis + Uy, Now (4), (5) and (6) imply
that v

Yuthsths = Yuths(er + e)ts = (Jas — wnsyw)eths = —uisynerths =
—u(er + es)yreyr = —uneynez = 0.

Also untirsyrs = usstiis(er + €)1z = Ussthseryre = (thre — trsthas)eYiz =uUneyna.
But then (x-y)' = exuuneyuus = x'y'.

We have proved that the mapping x — x’ is a homomorphism of € onto
the subalgebra €’ of ¥ consisting of all ’. The kernel'$ of this homo-
morphism is not € since otherwise every x' = 0 whereas u’ = eu, =
ei(es + e) = & ¥ 0. Since § is simple = 0, the homomorphism is an
isomorphism. This is impossible since € is not associative and @’ is
associative.

1 See the author’s “On a Certain Algebra of Quantum Mechanics,” Ann. Math., 35,
65-73 (1934).

2 For these properties see Section 18 of the author’s “A Structure Theory for Jordan
Algebras,” Ibid., 48, 546—-567 (1947).
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In this note I wish to present a theorem on the singular values of a
product of completely continuous operators in Hilbert space. As an
application, a simple proof of a recent result of S. H. Chang will be given.
The singular values of an operator K are the positive square roots of the
eigen-values of K*K, where K* is the adjoint of K.

We begin with a slight generalization of a theorem of Weyl.!

THEOREM 1. If H is a positive, symmetric, completely continuous operator
whose first n eigen-values® are \,, . . ., M, then

det [(Hyb yf)] S )\1' PR '>\n det [(yh yf)]

for any elements vy, ..., Y.

Here, det [a,] denotes the determinant of the nth order matrix with
elements ay. Weyl's elegant proof uses an appeal to the theory of #-
tensors. A straightforward proof may be given by using the relation
(Hys 1) = 2iM(¥4 %) (%1, ¥5), where the x, form a complete ortho-normal
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TueoreEM 2. If K is a completely continuous operator with singular
values a, then det [(Ky:, Ky;)] < ai® ... an? det [(ys, 3)].

This follows immediately from Theorem 1 if we set H = K*K.

THEOREM 3. Let A and B be completely continuous operators and let the
singular values of A, B and AB be denoted by ay, B, 7., respectively. If f
is any function such that f(e*) is convex and increasing as a function of x,
then for each n we have 3 i-1f(v) < 2i-1f(@By)-

Proof: Let y, ..., y, form an ortho-normal set with (4B)*4ABy; =
v:. By Theorem 2, v%- ... -v,2 = det [(ABy, ABy;)] < ay? .. .- ay?
det [(Bys, By)] < a?- ... -a@,?B:% ... -B,% The result now follows by
an application of a theorem of Polya.?

The next theorem was proved by Chang* using methods of function
theory.

THEOREM 4. Suppose K = K;- ... -K,, where each K; is an operator
of finite norm (integral operator with Ly kernel), and let v, be the singular
values of K. Then > v’™ converges.

Proof: The proof is by induction on m. The case m = 1 is an immediate
consequence of the definition of an operator of finite norm. Suppose the
theorem holds when K is a product of fewer than m operators. Let a; be
the singular values of Kj, and let 8 be the singular values of K;- ... -Kpn.
Using Theorem 3 and Holder’s inequality, we have

21712/’" S Ziat2 mﬁtz/m S (Eiaiz)l/m(ziﬁiZ/m_l)m-l/m

In conclusion we remark that by a theorem of Chang,* the convergence
of 3 v//™ implies the convergence of Y A,|”™, where \; are the eigen-
values of K.
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